Back to my home page
Problem Statement
6(a) Show ℱ[∫−∞ts(λ)dλ]=S(f)j2πf if S(0)=0. HINT: S(0)=S(f)|f=0=∫−∞∞s(t)e−j2π(f→0)tdt=∫−∞∞s(t)dt
6(b) If S(0)≠0 can you find ℱ[∫−∞ts(λ)dλ] in terms of S(0)?
ℱ[g(t−t0)ej2πf0t]=∫−∞∞[g(t−t0)ej2πf0t]e−j2πftdt
And
∫−∞∞g(t−t0)e−j2π(f−f0)tdt=∫−∞∞g(λ)e−j2π(f−f0)(λ+t0)dt
∫−∞∞g(λ)e−j2π(f−f0)(λ+t0)dt=∫−∞∞g(λ)e−j2π(f−f0)λe−j2π(f−f0)t0dt=
And ∫−∞∞g(λ)e−j2π(f−f0)λe−j2π(f−f0)t0dt=e−j2π(f−f0)t0[∫−∞∞g(λ)e−j2π(f−f0)λdt]
Result
ℱ[g(t)ej2πf0t]=G(f−f0)e−j2π(f−f0)t0