ASN4 -Fourier Transform property

From Class Wiki
Revision as of 00:06, 19 December 2009 by Jodi.Hodge (talk | contribs)
Jump to navigation Jump to search

Back to my home page

[cos(2πf0t)g(t)]=cos(2πf0t)g(t)ej2πftdt

Using Euler's cosine identity

cos(2πf0t)g(t)ej2πftdt=[12ej2πf0t+12ej2πf0t]g(t)ej2πftdt

cos(2πf0t)g(t)ej2πftdt=12ej2πf0t+12ej2πf0tg(t)ej2πftdt

cos(2πf0t)g(t)ej2πftdt=12ej2πf0tej2πftdt+12ej2πf0tg(t)ej2πftdt

cos(2πf0t)g(t)ej2πftdt=12ej2π(ff0)tg(t)dt+1212ej2π(f+f0)tg(t)dt

Identifying that the above equation contains Fourier Transforms the solution is

[cos(2πf0t)g(t)]=12G(ff0)+12[G(f+f0)