back top my home page
This Fourier Transform property says s ( 0 ) {\displaystyle s(0)\!} becomes ∫ − ∞ ∞ S ( f ) d f {\displaystyle \int _{-\infty }^{\infty }S(f)df}
s ( 0 ) = s ( t ) | t = 0 = F − 1 [ S ( f ) ] ) | t = 0 {\displaystyle s(0)=s(t)|_{t=0}={\mathcal {F}}^{-1}\left[S(f)\right])|_{t=0}}
Evaluating the inverse Fourier transform at time zero
s ( 0 ) = ∫ − ∞ ∞ S ( f ) e j 2 π f ( 0 ) d f = ∫ − ∞ ∞ S ( f ) d f {\displaystyle s(0)=\int _{-\infty }^{\infty }S(f)e^{j2\pi f(0)}df=\int _{-\infty }^{\infty }S(f)df}
Therefore this process shows that s ( 0 ) {\displaystyle s(0)\!} is ∫ − ∞ ∞ S ( f ) d f {\displaystyle \int _{-\infty }^{\infty }S(f)df}