EMEC - Greg
From Class Wiki
Revision as of 10:52, 6 January 2010 by
Fonggr
(
talk
|
contribs
)
(
→Analogies between Electric & Magnetic Circuits
)
(
diff
)
← Older revision
|
Latest revision
(
diff
) |
Newer revision →
(
diff
)
Jump to navigation
Jump to search
Definitions
Symbol
Units
Name
E
→
{\displaystyle {\overrightarrow {E}}}
V
M
{\displaystyle {\frac {V}{M}}}
Electric Field Intensity
D
→
{\displaystyle {\overrightarrow {D}}}
C
M
2
{\displaystyle {\frac {C}{M^{2}}}}
Electric Flux Density
H
→
{\displaystyle {\overrightarrow {H}}}
A
M
{\displaystyle {\frac {A}{M}}}
Magnetic Field Intensity
B
→
{\displaystyle {\overrightarrow {B}}}
T
=
W
M
2
{\displaystyle T={\frac {W}{M^{2}}}}
Magnetic Flux Density
Analogies between Electric & Magnetic Circuits
Electric
Magnetic
V
=
∫
E
→
⋅
d
l
→
{\displaystyle V=\int {\overrightarrow {E}}\cdot {\overrightarrow {dl}}}
F
→
=
∫
H
→
⋅
d
l
→
{\displaystyle {\overrightarrow {F}}=\int {\overrightarrow {H}}\cdot {\overrightarrow {dl}}}
∑
n
V
n
=
0
=
∮
E
→
⋅
d
l
→
{\displaystyle \sum _{n}V_{n}=0=\oint {\overrightarrow {E}}\cdot {\overrightarrow {dl}}}
Kirchoff's voltage law
∮
H
→
⋅
d
l
→
=
N
⋅
i
=
∑
n
H
⋅
l
+
N
⋅
i
=
0
{\displaystyle \oint {\overrightarrow {H}}\cdot {\overrightarrow {dl}}=N\cdot i=\sum _{n}H\cdot l+N\cdot i=0}
∑
n
I
n
=
0
=
∮
S
J
→
⋅
d
S
→
{\displaystyle \sum _{n}I_{n}=0=\oint _{S}{\overrightarrow {J}}\cdot {\overrightarrow {dS}}}
Kirchoff's current law
∮
B
→
⋅
d
S
→
=
0
{\displaystyle \oint {\overrightarrow {B}}\cdot {\overrightarrow {dS}}=0}
The B-field has to go around in a loop
∮
J
→
⋅
d
S
→
=
I
{\displaystyle \oint {\overrightarrow {J}}\cdot {\overrightarrow {dS}}=I}
∫
B
→
⋅
d
S
→
=
Φ
⏞
p
h
i
{\displaystyle \int {\overrightarrow {B}}\cdot {\overrightarrow {dS}}=\overbrace {\Phi } ^{phi}}
Magnetic flux
R
=
V
I
{\displaystyle R={\frac {V}{I}}}
R
⏞
r
e
l
u
c
t
a
n
c
e
=
F
Φ
=
N
⋅
i
Φ
{\displaystyle \overbrace {R} ^{reluctance}={\frac {F}{\Phi }}={\frac {N\cdot i}{\Phi }}}
I
=
V
R
=
G
⋅
V
{\displaystyle I={\frac {V}{R}}=G\cdot V}
or
J
→
=
σ
⋅
E
→
{\displaystyle {\overrightarrow {J}}=\sigma \cdot {\overrightarrow {E}}}
B
→
=
μ
⋅
H
{\displaystyle {\overrightarrow {B}}=\mu \cdot H}
assumed linearity (though it's not always the case - think hysteresis loop
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
English
Views
Read
View source
View history
More
Search
Navigation
Main page
Class Notes
Assembly
Circuits
LNA
Feedback
Electronics
EMEC
Signals
Digital Control
Communications
Power Electronics
Intro to CAD
E&M
Embedded
Help
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information