* HW #4 - Given a linear time-invariant system where <math>\ u(t) </math> produces an output <math>\ w(t) </math>, find the output due to any function <math>\ x(t) </math> ([[HW 4|Chris Lau]])
* HW #4 - Given a linear time-invariant system where <math>\ u(t) </math> produces an output <math>\ w(t) </math>, find the output due to any function <math>\ x(t) </math> ([[HW 4|Chris Lau]])
* HW #5:
* HW #5: [[HW 5|Chris Lau]]
** Part 1 - Find <math> \mathcal{F}[e^{- \sigma t} x(t)u(t)] </math> and relate it to the Laplace Transform. Derive the Inverse Laplace Transform of this from the inverse Fourier Transform.
** Part 1 - Find <math> \mathcal{F}[e^{- \sigma t} x(t)u(t)] </math> and relate it to the Laplace Transform. Derive the Inverse Laplace Transform of this from the inverse Fourier Transform.
** Part 2 - [[Image:20101006KeyDSCN3161.jpg|thumb|300px|center]]
** Part 2 - [[Image:20101006KeyDSCN3161.jpg|thumb|300px|center]]